	MI	HH	III	HIII
H	11111	HIE		1881

Reg. No.:....

Name :

Fourth Semester B.Tech. Degree Examination, July 2015 (2008 Scheme)

08.402 - DIGITAL ELECTRONICS AND LOGIC DESIGN (E)

Time: 3 Hours Max. Marks: 100

Instructions: Answer all questions from 'Part A' and three full questions from 'Part B' not choosing more than one question from each Module.

PART-A

- 1. Differentiate between straight binary and gray code.
- 2. State De-Morgan's theorems and explain.
- 3. Perform the following BCD addition
 - i) 1001 + 0100
 - ii) 01100111+01010011
- 4. Compare TTL and CMOS logic families.
- 5. Implement the following function using a multiplexer $f(A.B.C) = \sum (1, 3, 5, 6)$.
- Give the truth table and draw the logic circuit of a 4 bit (including parity) odd parity generator.
- 7. What is race around condition in flip flops? How it can be rectified?
- 8. Differentiate between synchronous and asynchronous counters.
- 9. Discuss the applications of shift registers.
- 10. Distinguish between static and dynamic RAM.

PART-B

Module - I

11.	a)	Perform the following conversions.	
		i) Binary number 110010 to Gray code.	
		ii) 67.468 ₁₀ to Hexadecimal.	
		iii) ABCD ₁₆ to octal.	
		iv) 327.89 ₁₀ to BCD code.	10
	b)	Perform	
		i) 7BA + 6C in Hexadecimal.	
		ii) -91 + 16 using 2's complement method.	5
	c)	Explain weighted and unweighted codes.	5
12.	a)	Find the minimal POS expression for	
		$F(A,B,C,D)=\pi(1,4,5,6,11,12,13,14,15) \text{ and implement the same using NOR gates}.$	10
	b)	Obtain the canonical SOP and POS expression for the function.	
		$f(A, B, C, D) = ABC + \overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ACD}$.	10
		Module – II	
13.	a)	Design and explain a BCD to 7 segment decoder.	10
	b)	Design and realise a gray code to binary code converter.	10
14.	a)	Design and realise a 2-bit magnitude comparator.	10
		Draw the logic diagram for implementing a 4 to 16 line decoder from 3 to 8	
		line decoders.	6
	c)	Distinguish between decoder and demultiplexer.	4

Module - III

15.	a)	Design and draw the circuit of a mod-3 synchronous counter using J-K and explain its operation.	10
	b)	Explain the internal diagram of 555 IC and describe its working as a monostable multivibrator.	10
16. a)	Draw the circuit of a 3-bit binary up-down counter and explain its operation.	10	
	b)	What is a ripple counter? Explain how it differs from ring counter with circuit diagrams.	10